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Feast and Famine 

- Feast/famine cycles are a recurrent environmental stressor

- The ability to withstand periods of limited/excess nutrient
availability is critical to animal survival
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Adipose tissues: 

Central to the feast/famine response

Visceral white adipose tissue

Subcutaneous white adipose tissue 

Brown fat



Adipose tissues are dynamic and 

possess wide developmental potential

Feast
(Adipose expansion)

Famine
(Adipose contraction)



Adipose development and remodeling–

coordination of multiple cell types



Adipose tissue remodeling 
- adaptive response to energy stress

PPARg

- Adipose tissues expand and contract during feast/famine cycles
� a process called “remodeling”  

- Remodeling is a complex process that requires coordinated changes within 
adipocytes, immune cells, surrounding vasculature, and the extracellular 
matrix

- Adaptive remodeling is dynamic and critical 
for maintaining metabolic homeostasis  

- The mechanisms underlying remodeling 
are poorly understood



Fibroblast growth factors 
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Wild type visceral fat

Chow Diet High-Fat Diet

FGF1

FGF1 protein is induced by high fat diet in 

adipose tissue



Adipose  tissue subcompartments –

adipocytes and stromal cells

Collagenase

Adipocytes

(float)

Stromal –Vascular-Fraction
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FGF1 is expressed predominantly

in visceral adipocytes

Whole Fat Subcutan. Visceral

SC adip. SVF adip. SVF

Fgf1

ERK1/2

Visceral fat depots are linked to metabolic disease and

has more active remodeling capacity than subcutaneous fat

Vis



Fibroblast growth factors 

PPARαPPARα

FXRFXRVDRVDR

NR regulation?NR regulation?

Metabolism?Metabolism?



Normal



Normal

FGF1:
a “boring” FGF
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Visceral adipose tissue fails to expand in 

FGF1 KO mice on a HFD
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Increased liver fat accumulation in FGF1 

KO mice on a HFD

KO

WT KO



Non-uniform size distribution in FGF1 KO 

visceral adipocytes

WT
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Increased fibrosis in visceral adipose tissue of 

FGF1 KO mice on a HFD

Masson’s trichrome stain – collagen stains blue

KO

KOWT



Impaired vascularity in visceral adipose of 

FGF1 KO mice on a HFD

WT KO

Visceral adipose tissue can’t properly expand in response to 
HFD in FGF1 KO mice;;. But, can it contract?

Heart perfusion of fluorescent spheres – vascular space in red, nuclei in blue



KO

36 weeks high fat 
diet

6 weeks
chow diet

Modern-day yoyo diet



WT

KO

Further impairment of FGF KO visceral 

adipose tissue upon HFD withdrawal 



Failure of FGF1 KO visceral WAT to 
properly contract upon HFD withdrawal 

WT KO



Fat necrosis in FGF1 KO mice after 

removal of HFD
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A new NR-FGF axis
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Future directions

• Some major questions ;

- Why is only visceral fat affected by loss of FGF1?

- Are adipocytes solely responsible for the whole body KO 
phenotype?

- What are the target cells of FGF1 action?

- Is there any therapeutic relevance for FGF1 in treating 
metabolic disease?
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- Is there a human connection?



FGF1 gain-of-function studies
- exploring therapeutic possibilities

• Pharmacological

- Parental delivery of recombinant FGF1 protein into 
animal models of obesity/diabetes.

• Genetic

- Tissue-specific transgenic overexpression of FGF1

- Viral overexpression of FGF1

Experimental approaches



Anti-diabetic
Insulin sensitization

TZD

PPARγ (master regulator)

Cardiovascular toxicity
Weight gain
Edema
Liver toxicity
Bone loss

FGF1

Actos
Avandia

$ 4 bn

>100 target genes

FGF1 : therapeutic possiblities ?

?
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Recombinant FGF1 has  potent glucose 
lowering effects in diabetic ob/ob mice
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Adipose stem cell
(CD34, CD29, Sca-1, CD24, 

PPARγ, Zfp423)

1 

2 

3

Mature adipocyte
(aP2, Glut4, Perilipin, 

LPL, Leptin, Resistin)

4

Mural cell
(SMA, NG2, PDGFRβ)

Endothelial cell
(PECAM-1, VE-Cadherin, 

VEGFR2,Tie2)

Hypertropic adipocyte
(TNF-α, ROS, FFA)

Dying adipocyte
(Perilipin-)

The adipocyte life cycle
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Biology of adipose tissues



Feast and Famine 

VDR

PPARg

-Feast/famine cycles have occurred throughout time

-The ability to withstand periods of limited/excess nutrient
availability is a critical aspect of survival



Why would alleles predisposing to obesity 

exist in natural populations?

“Thrifty allele hypothesis”

James V. Neel, M.D.,Ph.D. 

(1960s)

“Genes associated with common modern diseases like diabetes, 

hypertension and obesity are part of the human gene pool, 

because they helped our early ancestors survive when calories 

and salt were less abundant.”
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FGF1 is NOT boring!
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Topological distribution of adipose 

organs – developmentally regulated


